

Physics Lists

0 A physics list is an object in LArG4 which tells Geant4
which physics processes to enable when particles are
stepping through the detector volume.

RN / W
‘< /\< W lu
v

1. Neutrino nucleus 2. Stepping particles 3. Charge drift,
interaction (event through detector electronics
generator) (LArG4) simulations, etc

What Does a Physics List Do?

0 A physics list defines all particles and interactions which
Geant4 can track.

0 Every process attached to a particle has a characteristic
step length, this determines how far each step in the
simulation is

0 Hence no physics processes = no particle stepping

0 Particles and interactions are organized into smaller sub-
units called physics constructors.

0 The job of the physics list is to register the appropriate set
of physics constructors and hence select the required
particles and interactions for the simulation

QGSP_BERT

‘ NSRRI P | TUUUUUUTAN I LA I I MM M NS [I PRI T PRMIIL T W W Pl UV R Ve [sy

~ g eon

MM It

Yy ST

J

#include "G4EmStandardPhysics.hh
#include "G4EmExtraPhysics.hh”
#include "G4IonPhysics.hh”

#include "G4QStoppingPhysics.hh”
#include "G4HadronElasticPhysics.hh"
#include "G4NeutronTrackingCut.hh”

#include "G4DataQuestionaire.hh”
#include "HadronPhysicsQGSP_BERT.hh"

template<class T> TQGSP_BERT<T>::TQGSP_BERT(G4int ver): T()

G4DataQuestionaire it(photon);
G4cout << "<<< Geant4 Physics List simulation engine: QGSP_BERT 3.3"<<G4endl;
G4cout <<G4endl;

this->defaultCutvalue = 0.7*mm;
this->SetVerboseLevel(ver);

// EM Physics
this->RegisterPhysics(new G4EmStandardPhysics("standard EM",ver));

// Synchroton Radiation & GN Physics
this->RegisterPhysics(new G4EmExtraPhysics("extra EM"));

// Decays
this->RegisterPhysics(new G4DecayPhysics("decay”,ver));

// Hadron Elastic scattering
this-> RegisterPhysics(new G4HadronElasticPhysics("elastic",ver, false));

// Hadron Physics
G4bool quasiElastic;
this->RegisterPhysics(new HadronPhysicsQGSP_BERT("hadron",quasiElastic=true));

// Stopping Physics
this->RegisterPhysics(new G4QStoppingPhysics("stopping"));

// Ion Physics
this->RegisterPhysics(new G4IonPhysics("ion"));

// Neutron tracking cut
this->RegisterPhysics(new G4NeutronTrackingCut("Neutron tracking cut", ver));

—

Physics Constructors

0 The first thing a physics constructor does is declare all the particles
it applies to

0 Then for each type of particle, a singleton process manager is passed
instructions on which physics processes apply to that particle

0 For example, some lines from G4EmPhysicsStandard:

00118 // gamma

00119 G4Gamma::Gamma();

00120 00160 if (particleName == "gamma") {

00121 // leptons 00161

00122 G4Electron::Electron(); 00162 pmanager->AddDiscreteProcess(new G4PhotoElectricEffect);
00123 G4Positron::Positron(); 00163 pmanager->AddDiscreteProcess(new G4ComptonScattering);
00124 G4MuonPlus::MuonPlus(); 00164 pmanager->AddDiscreteProcess(new G4GammaConversion);

00165
00166 } else if (particleName == "e-") {
00167

00125 G4MuonMinus::MuonMinus();

Geant4 InBuilt Physics Lists

0 Geant4 features several sample physics lists.

0 In general all feature the same electromagnetic
physics - which is the majority of what we care about,
including:

0 Ionization, coulomb scattering, bremstrahlung, pair
production, e+ absorption, multiple scattering, etc etc

0 Hadronic physics varies a lot between physics lists.
For our events I think it is true to say that this only
ever becomes important at very low energy?

0 * Mention G4LowEnergyEM

Examples of Physics Lists

0 LHEP, QGSP, QGSC, FTFP, FTFC : “LHEP” : parameterized
“QGS” : Quark Gluon String; “FTF”: Fritjof; “P”: Pre-
equilibrium “C": CHIPS.

0 n xxxx_BERT, xxxx_BIC : intra-nuclear transport models,
Bertin and binary cascade.

O nn xxxx_GN : photon-nuclear reactions n xxxx_HP : high
precision low-energy

0 neutron transportation n xxxx_LEAD : leading-particle
biasing.

0 LArSoft default is QGSP_BERT - this chosen by Bill S, I
believe to mirror the ATLAS LAr calorimeter physics list

Configurability of LArSoft
physics list

0 For most simulation applications, a basic physics list is
chosen and then tweaked to meet the needs of the
experiment at hand.

0 In LArSoft we need some more flexibility - for some
simulation jobs we want to simulate optical photons, but
for others this is unnecessary

0 Running optical simulations carries a high computational
pricetag - a few hours per event.

0 Hence we also have a second, library sampling, much faster
optical simulation

0 Which optical physics to run (if any) is down to the physics
list - hence we want control of this on a job-by-job basis

Setting the Physics List

0 The LArSoft physics list is built to allow users to turn
on or off any Geant4 physics constructor at run time.

O It works like this:

0 Exerpt from simulationservices.fcl:

UseCustomPhysics: false #Whether to use a custom list of physics processes or the default
EnabledPhysics: ["Em", "SynchrotronAndGN", "lon", "Hadron",
"Decay”, "HadronElastic", "Stopping”, "NeutronTrackingCut" |

Names of physics constructors **

Physics Constructors

0 Some of the physics constructors allowed are default
Geant4 classes, whereas some are custom assembled for
larsoft (eg optical physics classes).

0 The physics list implementation is based on the “factory”
design scheme, whereby the set of accessible physics
constructors is not hard coded in the physics list
implementation

0 New physics constructors are registered at compile-time
and no code should be added to the physics list class ever.

0 Since this was implemented, various hacks have been
added which violate this design scheme- I am planning to
tidy these up soon.

Adding a custom physics
constructor

®n o LArSoft-SVN - LArG4 - Fermilab Redmine

% | = LArSoft-SVN - LArG4 - Fermila... l L] New Tab]

(|) >] [@ fnal.gov | https://cdcvs.fnal.gov/redmine/projects/larsoftsvn/wiki/LArG4 v C'] G’l' g4emstandardphysics.

Using Custom Physics Modules:

LArG4 now contains a configurable physics list which allows the user to enable or disable physical processes used in the GEANT4 simulation.
To control which G4PhysicsConstructors are loaded, set the following two parameters for the LArG4Parameters service, eg:

UseCustomPhysics = larg4.bool(False),

EnabledPhysics = larg4.vstring('Em' 'Optical' 'SynchotronAndGN' 'Ion' 'Hadron' 'Decay’ 'HadronElastic’ '
[- -

€ B J 4>

The default list of physics processes, as included in the QGSP_BERT physics list (the previous default before the list was configurable), are:

"om "o

"Em" "SynchotronAndGN" "Decay" "Hadron" "HadronElastic Stopping"” "Ion NeutronTrackingCut”
To create a new physics constructor, create a class which inherits from G4VPhysicsConstructor, providing the necessary ConstructParticle and
ConstructProcess methods (see a pre-existing GEANT4 physics constructor for an example). Then register the object in the physics list at

compile time by including the following line at the top of the .cxx file for the object:

CustomPhysicsFactory<Object> arbitrary factory name("ObjectName");

Where Object is the name of the object inherriting from G4VPhysicsConstructor, arbitrary_factory_name is an irrelevant label for the object
which registers the new physics constructor and ObjectName is the string which will be used in the job control file to enable the physics
processes.

The default constructors loaded in the QGSP_BERT physics list are all registered in the CustomPhysicsBuiltIns.hh and
CustomPhysicsBuiltIns.cxx files. Under no circumstances should new modules be registered this way - this file just provides wrappers for the
default GEANT4 objects. To register a new physics constructor, use the method described above.

The Guts

Create & Reqgister specified
[LArG4] custom physics constructors Templated
CustomPhysics
OpticalPhysics Factory<T>
4
PhysicsList Othey/Physics?
Redefined as typedef of 4
ConfigurablePhysicsList CustomPhysics
A TypeDef Abstract base class

A __ Inheritance

List
Switches on relevant physics
as specified by user

ConfigurablePhysics

CustomPhysicsTable
Static class. knows about
all compiled custom
physics child classes

Details of compiled
custom physics

‘.____.Igherrtance
Inheritance ---——-——_"‘--—-__-____-
P e
Config Observer |25 —
Reads from XML config

{ GEANT4

G4EmStandardPhysics
v

__G4DecayPhysics
>

---“'"é4DecayPhysics
—

etc...
—>

G4VPhysicsConstructor
Abstract base class

Create & Register specified G4
physics constructors

G4VModularPhysicsList
Abstract base class

Registering a module

0 No code added to the physics list class to add new
module, rather:

0 Custom physics class:

Eg in OpticalPhysics.cxx
CustomPhysicsFactory<OpticalPhysics> optical_factory("Optical”);

0 Existing Geant4 physics class are wrapped in
CustomPhysicsFactories in the files

CustomPhysicsBuiltins.hh CustomPhysicsBuiltIns.cxx

